U+2A2F Vector Or Cross Product
U+2A2F was added in Unicode version 3.2 in 2002. It belongs to the block
This character is a Math Symbol and is commonly used, that is, in no specific script.
The glyph is not a composition. It has no designated width in East Asian texts. In bidirectional text it acts as Other Neutral. When changing direction it is not mirrored. The word that U+2A2F forms with similar adjacent characters prevents a line break inside it. The glyph can be confused with one other glyph.
The CLDR project calls this character “iloczyn wektorowy” for use in screen reading software.
Wikipedia ma następujące informacje na temat tej współrzędnej kodowej:
In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b (read "a cross b"), is a vector that is perpendicular to both a and b, and thus normal to the plane containing them. It has many applications in mathematics, physics, engineering, and computer programming. It should not be confused with the dot product (projection product).
The magnitude of the cross product equals the area of a parallelogram with the vectors for sides; in particular, the magnitude of the product of two perpendicular vectors is the product of their lengths. The units of the cross-product are the product of the units of each vector. If two vectors are parallel or are anti-parallel (that is, they are linearly dependent), or if either one has zero length, then their cross product is zero.
The cross product is anticommutative (that is, a × b = − b × a) and is distributive over addition, that is, a × (b + c) = a × b + a × c. The space together with the cross product is an algebra over the real numbers, which is neither commutative nor associative, but is a Lie algebra with the cross product being the Lie bracket.
Like the dot product, it depends on the metric of Euclidean space, but unlike the dot product, it also depends on a choice of orientation (or "handedness") of the space (it is why an oriented space is needed). The resultant vector is invariant of rotation of basis. Due to the dependence on handedness, the cross product is said to be a pseudovector.
In connection with the cross product, the exterior product of vectors can be used in arbitrary dimensions (with a bivector or 2-form result) and is independent of the orientation of the space.
The product can be generalized in various ways, using the orientation and metric structure just as for the traditional 3-dimensional cross product; one can, in n dimensions, take the product of n − 1 vectors to produce a vector perpendicular to all of them. But if the product is limited to non-trivial binary products with vector results, it exists only in three and seven dimensions. The cross-product in seven dimensions has undesirable properties, however (e.g. it fails to satisfy the Jacobi identity), so it is not used in mathematical physics to represent quantities such as multi-dimensional space-time. (See § Generalizations below for other dimensions.)
Reprezentacje
System | Reprezentacje |
---|---|
Nº | 10799 |
UTF-8 | E2 A8 AF |
UTF-16 | 2A 2F |
UTF-32 | 00 00 2A 2F |
Adres URL cytowany | %E2%A8%AF |
HTML hex reference | ⨯ |
Błędne windows-1252 Mojibake | ⨯ |
HTML named entity | ⨯ |
Kodowanie: GB18030 (hex bajtów) | 81 38 8F 33 |
LATEX | \ElzTimes |
Powiązane znaki
Znaki mylone
Gdzie indziej
Kompletny opis
Właściwość | Wartość |
---|---|
3.2 (2002) | |
VECTOR OR CROSS PRODUCT | |
— | |
Supplemental Arrows-C | |
Math Symbol | |
Common | |
Other Neutral | |
Not Reordered | |
none | |
|
|
✘ | |
|
|
|
|
✘ | |
|
|
|
|
|
|
|
|
|
|
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
|
|
Any | |
✔ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
0 | |
0 | |
0 | |
✘ | |
None | |
— | |
NA | |
Other | |
— | |
✘ | |
✘ | |
✘ | |
✔ | |
✘ | |
Yes | |
Yes | |
|
|
Yes | |
|
|
Yes | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✔ | |
✘ | |
✘ | |
✘ | |
✘ | |
Other | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
Other | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
✘ | |
|
|
None | |
neutral | |
Not Applicable | |
— | |
No_Joining_Group | |
Non Joining | |
Alphabetic | |
none | |
not a number | |
|
|
R |