Start: go to the homepage U+1D400 bis U+1D7FF Mathematical Alphanumeric Symbols
Zeichen für U+1D70B
Quelle: Noto Sans Math

U+1D70B Mathematical Italic Small Pi

U+1D70B wurde in Version 3.1 in 2001 zu Unicode hinzugefügt. Er gehört zum Block U+1D400 bis U+1D7FF Mathematical Alphanumeric Symbols in der U+10000 bis U+1FFFF Supplementary Multilingual Plane.

Dieses Zeichen ist ein Lowercase Letter und wird allgemein verwendet, das heißt, in keiner speziellen Schrift.

Das Zeichen ist eine Schriftart Variante des Zeichens Zeichen für U+03C0 Greek Small Letter Pi. Es hat keine zugewiesene Weite in ostasiatischen Texten. In bidirektionalem Text wird es von links nach rechts geschrieben. Bei einem Richtungswechsel wird es nicht gespiegelt. Das Wort, das U+1D70B mit ähnlichen Zeichen bildet, verbietet in sich Zeilenumbrüche. Der Buchstabe kann mit einem anderen Zeichen verwechselt werden.

Die Wikipedia hat die folgende Information zu diesem Codepunkt:

The number π (; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as 22 7 are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

For thousands of years, mathematicians have attempted to extend their understanding of π, sometimes by computing its value to a high degree of accuracy. Ancient civilizations, including the Egyptians and Babylonians, required fairly accurate approximations of π for practical computations. Around 250 BC, the Greek mathematician Archimedes created an algorithm to approximate π with arbitrary accuracy. In the 5th century AD, Chinese mathematicians approximated π to seven digits, while Indian mathematicians made a five-digit approximation, both using geometrical techniques. The first computational formula for π, based on infinite series, was discovered a millennium later. The earliest known use of the Greek letter π to represent the ratio of a circle's circumference to its diameter was by the Welsh mathematician William Jones in 1706.

The invention of calculus soon led to the calculation of hundreds of digits of π, enough for all practical scientific computations. Nevertheless, in the 20th and 21st centuries, mathematicians and computer scientists have pursued new approaches that, when combined with increasing computational power, extended the decimal representation of π to many trillions of digits. These computations are motivated by the development of efficient algorithms to calculate numeric series, as well as the human quest to break records. The extensive computations involved have also been used to test supercomputers as well as stress testing consumer computer hardware.

Because its definition relates to the circle, π is found in many formulae in trigonometry and geometry, especially those concerning circles, ellipses and spheres. It is also found in formulae from other topics in science, such as cosmology, fractals, thermodynamics, mechanics, and electromagnetism. It also appears in areas having little to do with geometry, such as number theory and statistics, and in modern mathematical analysis can be defined without any reference to geometry. The ubiquity of π makes it one of the most widely known mathematical constants inside and outside of science. Several books devoted to π have been published, and record-setting calculations of the digits of π often result in news headlines.

Darstellungen

System Darstellung
Nr. 120587
UTF-8 F0 9D 9C 8B
UTF-16 D8 35 DF 0B
UTF-32 00 01 D7 0B
URL-kodiert %F0%9D%9C%8B
HTML hex reference 𝜋
Falsches windows-1252-Mojibake 𝜋
Kodierung: GB18030 (Hex-Bytes) 94 33 D8 31
LATEX \mathsl{\Pi}

Verwandte Schriftzeichen

Verwechselbare

Anderswo

Vollständiger Eintrag

Eigenschaft Wert
Alter (age) 3.1 (2001)
Unicode-Name (na) MATHEMATICAL ITALIC SMALL PI
Unicode-1-Name (na1)
Block (blk) Mathematical Alphanumeric Symbols
Allgemeine Kategorie (gc) Lowercase Letter
Schrift (sc) Common
Bidirectional Category (bc) Left To Right
Combining Class (ccc) Not Reordered
Dekompositionstyp (dt) Schriftart
Decomposition Mapping (dm) Zeichen für U+03C0 Greek Small Letter Pi
Kleinbuchstabe (Lower)
Simple Lowercase Mapping (slc) Zeichen für U+1D70B Mathematical Italic Small Pi
Lowercase Mapping (lc) Zeichen für U+1D70B Mathematical Italic Small Pi
Großbuchstabe (Upper)
Simple Uppercase Mapping (suc) Zeichen für U+1D70B Mathematical Italic Small Pi
Uppercase Mapping (uc) Zeichen für U+1D70B Mathematical Italic Small Pi
Simple Titlecase Mapping (stc) Zeichen für U+1D70B Mathematical Italic Small Pi
Titlecase Mapping (tc) Zeichen für U+1D70B Mathematical Italic Small Pi
Case Folding (cf) Zeichen für U+1D70B Mathematical Italic Small Pi
ASCII Hex Digit (AHex)
Alphabetic (Alpha)
Bidi-Kontrollzeichen (Bidi_C)
Bidi Mirrored (Bidi_M)
Composition Exclusion (CE)
Case Ignorable (CI)
Changes When Casefolded (CWCF)
Changes When Casemapped (CWCM)
Changes When NFKC Casefolded (CWKCF)
Changes When Lowercased (CWL)
Changes When Titlecased (CWT)
Changes When Uppercased (CWU)
Cased (Cased)
Full Composition Exclusion (Comp_Ex)
Default Ignorable Code Point (DI)
Dash (Dash)
Veraltet (Dep)
Diakritisch (Dia)
Emoji Modifier Base (EBase)
Emoji Component (EComp)
Emoji Modifier (EMod)
Emoji-Darstellung (EPres)
Emoji (Emoji)
Extender (Ext)
Extended Pictographic (ExtPict)
FC NFKC Closure (FC_NFKC) Zeichen für U+1D70B Mathematical Italic Small Pi
Grapheme Cluster Break (GCB) Egal
Grapheme Base (Gr_Base)
Grapheme Extend (Gr_Ext)
Grapheme Link (Gr_Link)
Hex Digit (Hex)
Hyphen (Hyphen)
ID Continue (IDC)
ID-Start (IDS)
IDS Binary Operator (IDSB)
IDS Trinary Operator and (IDST)
IDSU (IDSU) 0
ID_Compat_Math_Continue (ID_Compat_Math_Continue) 0
ID_Compat_Math_Start (ID_Compat_Math_Start) 0
Ideogramm (Ideo)
InCB (InCB) None
Indic Mantra Category (InMC)
Indic Positional Category (InPC) NA
Indic Syllabic Category (InSC) Other
Jamo Short Name (JSN)
Verbindungskontrollzeichen (Join_C)
Logische Reihenfolgenausnahme (LOE)
Modifier Combining Mark (MCM)
Math (Math)
Nicht-Zeichen-Codepunkt (NChar)
NFC Quick Check (NFC_QC) Ja
NFD Quick Check (NFD_QC) Ja
NFKC Casefold (NFKC_CF) Zeichen für U+03C0 Greek Small Letter Pi
NFKC Quick Check (NFKC_QC) Nein
NFKC_SCF (NFKC_SCF) Zeichen für U+03C0 Greek Small Letter Pi
NFKD Quick Check (NFKD_QC) Nein
Other Alphabetic (OAlpha)
Other Default Ignorable Code Point (ODI)
Other Grapheme Extend (OGr_Ext)
Other ID Continue (OIDC)
Other ID Start (OIDS)
Other Lowercase (OLower)
Other Math (OMath)
Other Uppercase (OUpper)
Prepended Concatenation Mark (PCM)
Pattern Syntax (Pat_Syn)
Pattern White Space (Pat_WS)
Quotation Mark (QMark)
Regional Indicator (RI)
Radical (Radical)
Sentence Break (SB) Klein
Soft Dotted (SD)
Sentence Terminal (STerm)
Terminal Punctuation (Term)
Unified Ideograph (UIdeo)
Variation Selector (VS)
Word Break (WB) Alphabetic Letter
White Space (WSpace)
XID Continue (XIDC)
XID-Start (XIDS)
Expands On NFC (XO_NFC)
Expands On NFD (XO_NFD)
Expands On NFKC (XO_NFKC)
Expands On NFKD (XO_NFKD)
Bidi Paired Bracket (bpb) Zeichen für U+1D70B Mathematical Italic Small Pi
Bidi Paired Bracket Type (bpt) None
Ostasiatische Weite (ea) neutral
Hangul Syllable Type (hst) Nicht anwendbar
ISO 10646 Comment (isc)
Joining Group (jg) No_Joining_Group
Joining Type (jt) Non Joining
Line Break (lb) Alphabetic
Numerischer Typ (nt) none
Numerischer Wert (nv) keine Nummer
Simple Case Folding (scf) Zeichen für U+1D70B Mathematical Italic Small Pi
Schrifterweiterung (scx)
Vertical Orientation (vo) R