U+23B3 Summation Bottom
U+23B3 was added in Unicode version 3.2 in 2002. It belongs to the block
This character is a Math Symbol and is commonly used, that is, in no specific script.
The glyph is not a composition. It has no designated width in East Asian texts. In bidirectional text it acts as Other Neutral. When changing direction it is not mirrored. The word that U+23B3 forms with similar adjacent characters prevents a line break inside it.
The Wikipedia has the following information about this codepoint:
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article.
The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need of parentheses, and the result is the same irrespective of the order of the summands. Summation of a sequence of only one element results in this element itself. Summation of an empty sequence (a sequence with no elements), by convention, results in 0.
Very often, the elements of a sequence are defined, through a regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be represented with most summands replaced by ellipses. For example, summation of the first 100 natural numbers may be written as 1 + 2 + 3 + 4 + ⋯ + 99 + 100. Otherwise, summation is denoted by using Σ notation, where $\sum $ is an enlarged capital Greek letter sigma. For example, the sum of the first n natural numbers can be denoted as $\sum _{i=1}^{n}i.$
For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closedform expressions for the result. For example,
 $\sum _{i=1}^{n}i=\frac{n(n+1)}{2}.$
Although such formulas do not always exist, many summation formulas have been discovered—with some of the most common and elementary ones being listed in the remainder of this article.
Representations
System  Representation 

Nº  9139 
UTF8  E2 8E B3 
UTF16  23 B3 
UTF32  00 00 23 B3 
URLQuoted  %E2%8E%B3 
HTML hex reference  ⎳ 
Wrong windows1252 Mojibake  âŽ³ 
Elsewhere
Complete Record
Property  Value 

3.2 (2002)  
SUMMATION BOTTOM  
—  
Miscellaneous Technical  
Math Symbol  
Common  
Other Neutral  
Not Reordered  
none  


✘  




✘  










✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  


Any  
✔  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
0  
0  
0  
✘  
None  
—  
NA  
Other  
—  
✘  
✘  
✔  
✘  
Yes  
Yes  


Yes  


Yes  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✘  
✔  
✘  
✘  
✘  
✘  
Other  
✘  
✘  
✘  
✘  
✘  
Other  
✘  
✘  
✘  
✘  
✘  
✘  
✘  


None  
neutral  
Not Applicable  
—  
No_Joining_Group  
Non Joining  
Alphabetic  
none  
not a number  


R 